Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2,2'-Diamino-4, $\mathbf{4}^{\prime}$-bi-1,3-thiazole- $\kappa^{2} N, N^{\prime}$)-bis(glycinato- $\left.\kappa^{2} N, O\right)$ cobalt(II) dihydrate

Jian-Yong $Y u$, ${ }^{\text {a }}$ Bing-Xin Liu ${ }^{a}$ and Duan-Jun $\mathbf{X u}^{\mathbf{b}}{ }^{\mathbf{*}}$

${ }^{\text {a }}$ Department of Chemistry, Shanghai University, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Zhejiang University, People's
Republic of China
Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.024$
$w R$ factor $=0.066$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Co}^{\mathrm{II}}$ ion (site symmetry 2) is coordinated by an N, N-bidentate diaminobithiazole ligand and two N, O-bidentate glycinate anions in a distorted octahedral geometry. The five-membered Co-glycinate ring displays an envelope conformation. A network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds helps to consolidate the crystal packing.

Comment

Complexes containing the diaminobithiazole (DABT) ligand have attracted much attention because of their interesting magnetic properties (Sun et al., 1997). As part of an ongoing investigation of metal complexes incorporating DABT (Liu et al., 2001), the title $\mathrm{Co}^{\mathrm{II}}$ complex, (I), has been prepared and its crystal structure is presented here. The asymmetric unit consist of a $\mathrm{Co}^{\mathrm{II}}$ ion (site symmetry 2), half a DABT molecule, a glycinate anion and a water molecule.

Crystal symmetry results in the $\mathrm{Co}^{\mathrm{II}}$ ion being coordinated by two glycinate anions and one DABT molecule, with a distorted cis- $\mathrm{CoN}_{4} \mathrm{O}_{2}$ octahedral geometry (Fig. 1 and Table 1). The DABT molecule chelating to the $\mathrm{Co}^{\mathrm{II}}$ ion is close to being planar; the dihedral angle of $9.68(6)^{\circ}$ in (I) between the thiazole mean planes is comparable to the values of 11.1 (4) ${ }^{\circ}$ in an $\mathrm{Ni}^{\text {II }}$ complex of DABT (Liu \& Xu , 2004) and 10.3 (3) ${ }^{\circ}$ in another $\mathrm{Co}^{\text {II }}$ complex of DABT (Liu et al., 2003).

The glycinate anion chelates to the $\mathrm{Co}^{\mathrm{II}}$ ion through the amino N atom and a carboxyl O atom. The chelate fivemembered ring displays an envelope conformation, with atom N3 lying at the flap position and displaced from the mean plane formed by the other four atoms by 0.399 (2) A. The uncoordinated carboxyl O 2 atom links to two neighboring complex molecules and one non-coordinated water molecule via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Received 3 October 2005 Accepted 4 October 2005 Online 8 October 2005
\qquad

Experimental

An aqueous solution (20 ml) containing DABT ($0.20 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~g}, 1 \mathrm{mmol})$ was mixed with another aqueous solution (10 ml) of glycine $(0.15 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{NaOH}(0.04 \mathrm{~g}$, 1 mmol). The mixture was refluxed for 5 h . The solution was filtered after cooling to room temperature. Red single crystals of (I) were obtained from the filtrate after 3 d .

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=441.35$
Monoclinic, $C 2 / c$
$a=13.1155$ (12) £
$b=8.9953$ (11) \AA
$c=14.0924$ (12) \AA
$\beta=92.590(2)^{\circ}$
$V=1660.9(3) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.720, T_{\text {max }}=0.820$
9452 measured reflections

$$
D_{x}=1.765 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 8864
reflections
$\theta=2.9-25.2^{\circ}$
$\mu=1.33 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, red
$0.30 \times 0.22 \times 0.15 \mathrm{~mm}$

2063 independent reflections
1924 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-16 \rightarrow 17$
$k=-10 \rightarrow 11$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.066$
$S=1.06$
2063 reflections
114 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0376 P)^{2}\right. \\
\\
\quad+1.092 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co}-\mathrm{O} 1$	$2.1300(10)$	$\mathrm{Co}-\mathrm{N} 3$	$2.1367(12)$
$\mathrm{Co}-\mathrm{N} 1$	$2.1533(11)$		
$\mathrm{C} 2-\mathrm{S}-\mathrm{C} 1$	$89.61(7)$		

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.88	2.01	$2.878(2)$	167
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots 1^{\text {ii }}$	0.88	2.19	$2.965(2)$	146
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {ii }}$	0.85	2.39	$3.097(2)$	142
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\text {iii }}$	0.87	2.09	$2.915(2)$	158
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1 W$	0.89	2.25	$3.073(2)$	154
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{iv}}$	0.87	2.45	$3.297(2)$	163
Symmetry codes: (i) $x,-y+1, z-\frac{1}{2} ;$ (ii) $-x+1, y,-z+\frac{1}{2} ;$ (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2} ;($ (iv $)$				
$-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.				

H atoms bonded to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.97 \AA$ (methylene), and included in

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds [symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$].
the final cycles of refinement in the riding mode, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. Other H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\text {eq }}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (No. AB0448).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Liu, J.-G., Nie, J.-J., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. \& Chiang, M. Y. (2001). Acta Cryst. C57, 354-355.
Liu, J.-G. \& Xu, D.-J. (2004). Acta Cryst. E60, m108-m110.
Liu, J.-G., Xu, D.-J. \& Xu, Y.-Z. (2003). Acta Cryst. E59, m886-m888.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sun, W., Gao, X. \& Lu, F. J. (1997). Appl. Polym. Sci. 64, 2309-2315.

